IBM 0S/2 16/32-bit Object Module Format (OMF)
and Linear eXecutable Module Format (LX)

Revision 8

June 30, 1994

Boca Programming Center
Boca Raton, Florida

Copyright IBM Corp. 1991, 1993

—— Purpose of this document

THIS DOCUMENT PROVIDED BY IBM SHALL BE PROVIDED ON AN “AS IS” BASIS
WITHOUT ANY WARRANTY OF ANY KIND EITHER EXPRESS OR IMPLIED. THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE EXPRESSLY DISCLAIMED.

FURTHERMORE, THIS DOCUMENTATION IS IN A PRELIMINARY FORM; IS NOT COM-
PLETE; HAS NOT YET BEEN TESTED, VALIDATED OR REVIEWED; MAY CONTAIN
ERRORS, OMISSIONS, INACCURACIES OR THE LIKE; AND IS SUBJECT TO BEING
CHANGED, REVISED OR SUPERSEDED IN WHOLE OR IN PART BY IBM. IBM DOES
NOT ASSUME ANY RESPONSIBILITY TO NOTIFY ANY PARTIES, COMPANIES, USERS,
AND OR OTHERS OF DEFECTS, DEFICIENCIES, CHANGES, ERRORS OR OTHER
FAILINGS OR SHORTCOMING OF THE DOCUMENTATION.

RECIPIENT’S USE OF THIS DOCUMENT IS LIMITED TO RECIPIENT’S PERSONAL USE
FOR THE SOLE PURPOSE OF CREATING TOOLS FOR THE OS§/2!
OPERATING SYSTEM.

1 0S/2is a Registered Trademark of International Business Machines Corp.

Copyright IBM Corp. 1991, 1993

Contents
Introduction 2
THE 16/32-BIT OBJECT MODULE FORMAT 3
Record Format: 3
Frequent Object Record Subfields 3
Names e 3
Indexed References 4
Numeric 2 and 4 byte fields 4
Order of records 5
Object Record Types 6
80H THEADR Translator Header Record 7
82H LHEADR Library Header Record 8
88H COMENT Comment Record 9
88H IMPDEF Import Definition Record (comment class A0, subtype 01) 12
88H EXPDEF Export Definition Record (comment class A0, subtype 02) 13
88H INCDEF Incremental Compilation Record (comment class A0, subtype 03) 15
88H LNKDIR C+ + Directives Record (comment class A0, subtype 05) 16
88H LIBMOD Library Module Name Record (comment class A3) 17
88H EXESTR Executable String Record (comment class A4) 18
88H INCERR Incremental Compilation Error (comment class A6) 19
88H NOPAD No Segment Padding (comment class A6) 20
88H WKEXT Weak Extern Record (comment class A8) 21
88H LZEXT Lazy Extern Record (comment class A9) 23
88H IDMDLL Identifier Manipulator DLL (comment class AF) 24
88H PharLap Format Record (comment class AA) 26
8AH or 8BH MODEND Module End Record 27
8CH EXTDEF External Names Definition Record 29
90H or 91H PUBDEF Public Names Definition Record 30
94H or 95H LINNUM Line Number Record 32
96H LNAMES List of Names Record 33
98H or 99H SEGDEF Segment Definition Record 34
9AH GRPDEF Group Definition Record 37
9CH or 9DH FIXUPP Fixup Record 38
AOH or A1H LEDATA Logical Enumerated Data Record 42
A2H or A3H LIDATA Logical Iterated Data Record 43
BOH COMDEF Communal Names Definition Record 45
B2H or B3H BAKPAT Backpatch Record 47
B4H or BSH LEXTDEF Local External Names Definition Record 48
B6H or B7TH LPUBDEF Local Public Names Definition Record 49
B8H LCOMDEF Local Communal Names Definition Record 50
C2H or C3H COMDAT Initialized Communal Data Record 51
C4H or C5H LINSYM Symbol Line Numbers Record 54
C6H ALIAS Alias Definition Record 55
C8H or C9H NBKPAT Named BackPatch Record 56
LX - Linear eXecutable Module Format Description 57
Revision codes: L 57
32-bit Linear EXE Header e 57
LX Header 59
Program (EXE) startup registers and Library entry registers 65
Object Table e 67

Contents i

Copyright IBM Corp. 1991, 1993

Object Page Table 68
Resource Table 70
Resident or Non-resident Name Table Entry 71
Entry Table 72
Module Format Directives Table 75
Verify Record Directive Table 76
Per-Page Checksum 77
Fixup Page Table 78
Fixup Record Table 79
Import Module Name Table 83
Import Procedure Name Table 84
Preload Pages 85
Demand Load Pages 85
Iterated Data Pages 85
Debug Information 86

Contents 1ii

Copyright IBM Corp. 1991, 1993

Figures

,_‘
PORXIND L=

u.u.-b.h.h-hJ>t-l:-hh-huwwuuwuuuwwwwwwwwwwwm»—-»—»--»—-—-»—-»—~—
=R R RS E- VR N CPaE SRR N R VI Al S R T R R M BRSO VRN S

Standard object module record format L L L 3
THEADR record type definition 7
LHEADR record type definition 8
COMENT record type definition 9
IMPDEEF record type definition 12
IMPDEF record type definition 13
INCDEF record type definition 15
LNKDIR record type definition 16
BIT FLAGS byte definition 16
LIBMOD record type definition 17
EXESTR record type definition 18
INCERR record type definition 19
NOPAD record type definition 20
WEAK EXTERN record type definition 21
LAZY EXTERN record type definition 23
IDMDLL Identifier Manipulator DLL subrecord format definition 24
MODEND moduleend record 27
EXTDEF external names definitionrecord 29
PUBDEF Public Names Definition Record 30
LINNUM lLine numberrecord et 32
LNAMES list of names record 33
SEGDEF segment definitionrecord 34
GRPDEF group definitionrecord 37
FIXUPP Fixup Record e 38
LEDATA logical enumerated datarecord 42
LIDATA Logical Iterated Data Record 43
COMDEF Communal Names Definition Record 45
BAKPAT Backpatchrecord e 47
LEXTDEF Local External Names Definition Record 48
LPUBDEF Local Public Names Definition Record 49
LCOMDEF Local Communal Names Definition Record 50
COMDAT initialized communal datarecord 51
COMDAT initialized communal datarecord 54
ALIAS Alias Definition Record 55
NBKPAT Named Backpatch Record 56
Dos 2.0 Section (Discarded) 57
Linear Executable Module Header (Resident) 57
Loader Section (Resident) 58
Loader Section (Resident) 58
Non-Resident Section 59
Notused by the Loader e 59
32-bit Linear EXE Header e 60
Object Table e 67
Object Page Table Entry e 69
Resource Table 70
Resident or Non-resident Name Table Entry 71
Entry Table e 72
Module Format Directive Table 76
Verify Record Table e 77
Per-Page Checksum e 78
Fixup Page Table e 78

Copyright IBM Corp. 1991, 1993

52.
53.
54.
55.
56.
57.
58.
59.
60.

Fixup Record Table 79
Internal Fixup Record 81
Import by Ordinal Fixup Record 81
Import by Name Fixup Record 82
Internal Entry Table Fixup Record 83
Import Module Name Table 83
Import Procedure Name Table 84
Object Iterated Data Record (Iteration Record) 85
Debug Information 86

Figures V

Copyright IBM Corp. 1991, 1993

—— Major changes to this document

e Draft I = Combined information from several documents into one.
¢ Draft 2 = Added Comments from Lexington and Toronto.

* Draft 3 = Added the Linear Executable format (LX).

* Draft4 = Minor corrections.

* Draft 5 = Added StackSize to LX structure.

e Revision 6 = Added IDMDLL COMENT record

Added 16-bit object record definitions
Added ITERDATA?2 definition and minor corrections

e Revision 7

¢ Revision 8

Copyright IBM Corp. 1991, 1993

Introduction

This document is intended to describe the interface that is used by language translators and generators as
their intermediate output to the linker for the 32-bit OS/2 operating system. The linker will generate the
executable module that is used by the loader to invoke the .EXE and .DLL programs at execution time.

Introduction 2

Copyright IBM Corp. 1991, 1993

THE 16/32-BIT OBJECT MODULE FORMAT

Record Format:

All object records confirm to the following format:

1 byte 2 byte <variable length> 1 byte
Record Type | Record Length Record Contents Chk Sum or 0
<emmme-- record length in bytes -------- >

Figure 1. Standard object module record format.

The Record Type field is a 1-byte field containing the hexadecimal number that identifies the type of object
record. The format is determined by the least significant bit of the Record Type field. Note that this does
not govern Use32/Usel6 segment attributes; it simply specifies the size of certain numeric fields within the

record. An odd Record Type indicates that 32-bit values are present. An even Record Type indicates that
those fields contain 16-bit values. The fields affected are described with each record.

An entire record occupies Record Length + 3 bytes. The record length does not include the count for the
record type and record length fields. Unless otherwise noted within the record definition, the record length
should not exceed 1024 bytes.

The Record Contents are determined by the record type.

The Chk Sum field is a 1-byte field that contains the negative sum (modulo 256) of all other bytes in the
record. The byte sum over the entire record, ignoring overflow, is zero.

NOTES:

LINK 386 ignores the value of the Chk Sum byte.

Frequent Object Record Subfields

The contents of each record are determined by the record type, but certain subfields appear frequently; the
format of such fields is described next.

Names
Name strings are encoded as an 8-bit unsigned count followed by a string of “count” characters. The char-

acter set is usually some ASCII subset. A null name is specified by a single byte of 0 (indicating a string of
length zero).

THE 16/32-BIT OBJECT MODULE FORMAT 3

Copyright IBM Corp. 1991, 1993

Indexed References

Certain items are ordered by occurrence, and referenced by index (starting index is 1). Index fields can
contain 0, indicating not-present, or values from 1 through 7FFF. The index is encoded as 1 or 2 bytes.

If the index number is in the range 0-7H, the high-order bit (bit 7) is 0 and the low-order bits contain the
index number, so the field is only 1 byte long. If the index number is in the range 80-7FFFH, the field is 2
bytes long. The high-order bit of the first byte in the field is set to 1, and the high-order byte of the index
number which must be in the range (0-7FH) fits in the remaining 7 bits. The low-order byte of the index
number is specified in the second byte of the field. A 16-bit value is obtained as follows:

if (first_byte & 0x80)

index word = (first_byte & 7F) * 0x100 + second byte;
else

index_word = first_byte

Type indices

The type index is treated as an index field when a record is parsed (occupies one or two bytes, occurs in
PUBDEF, COMDEF, EXTDEF records). They are encoded as described under indexed references.

NOTE: At present, no type checking is done by the linker. If any link-time semantics are defined, that
information will be recorded somewhere within this document.

Ordered Collections

Certain records and record groups are ordered; the ordering is obtained from the order of the record types
within the file together with the ordering of repeated fields within these records. Such ordered collections are
referenced by index, counting from 1 (index 0 indicates unknown or decline-to-state).

For example, there may be many LNAMES records within a module and each of those records may contain
many names. The names are indexed starting at 1 for the first name in the first LNAMES record encount-
ered while reading the file, 2 for the second name in the first record, etc., and the highest index for the last
name in the last LNAMES record encountered.
The ordered collections are:

« NAMES: ordered by LNAMES record and names within each. Referenced as a Name Index.

* LOGICAL SEGMENTS: ordered by SEGDEF records in file. Referenced as a Segment Index.

* GROUPS: ordered by GRPDEF of records in file. Referenced as a Group Index.

* EXTERNAL SYMBOLS: ordered by EXTDEF and COMDEF records and symbols within each. Ref-
erenced as an External Index (in FIXUPs).

Numeric 2 and 4 byte fields

Words and double words (16 and 32 bit quantities) are stored in Intel byte order (lowest address is least

significant).

Certain records, notably SEGDEF, PUBDEF, LINNUM, LEDATA, LIDATA, FIXUPP and MODEND,
contain size, offset, and displacement values which may be 32 bit quantities for Use32 segments. The
encoding is as follows.

THE 16/32-BIT OBJECT MODULE FORMAT 4

Copyright IBM Corp. 1991, 1993

* When the least significant bit of the record type byte is set (ie record type is an odd number), the
numeric fields are 4 bytes.

* When the least significant bit of the record type byte is clear, the fields occupy 2 bytes (16 bit Object
Module Format). The values are zero-extended when applied to Use32 segments.

See the description of SEGDEF records for an explanation of Use16/Use32 segments.

Order of records

The record order is chosen so that bind/link passes through an object module are minimized. This differs
from the previous less specific ordering in that all symbolic information (in particular, all export and public
symbols) must occur at the start of the object module. This order is recommended but not mandatory.

Identifier record(s):
Must be the first record.
« THEADR or LHEADR

Records processed by Link Pass one:
May occur in any order but must precede the Link pass separator if it is present.

*« COMENT class AF providing name of Identifier Manipulator Dynamic Link Library (should be near
the beginning of the file)

* COMENT identifying object format and extensions

* COMENT any, other than link pass separator comment
* LNAMES providing ordered name list

» SEGDEF providing ordered list of program segments

* GRPDEF providing ordered list of logical segments

¢ TYPDEF (no longer used)

* ALIAS records

* PUBDEEF locating and naming public symbols

¢ LPUBDEF locating and naming private symbols.

» COMDEF, EXTDEF, LCOMDEF, LEXTDEF records

This group of records is indexed together, so External Index fields in FIXUPP records may refer to
any of the record types listed.

COMDAT records

Link pass separator (optional):
* COMENT class A2 indicating that pass 1 of the linker is complete.

When this record is encountered, LINK immediately starts Pass 2; no records after this comment are
read in Pass 1. All the above listed records must come before this comment record. For greater

linking speed, all LIDATA, LEDATA, FIXUPP and LINNUM records should come after the A2
comment record, but this is not required.

THE 16/32-BIT OBJECT MODULE FORMAT S

Copyright IBM Corp. 1991, 1993

In LINK, Pass 2 begins again at the start of the object module, so LIDATA records, etc., are proc-
essed in Pass 2 no matter where they are placed in the object module.

Records ignored by link pass one and processed by link pass two:

May come before or after link pass two:

 LIDATA or LEDATA records followed by applicable FIXUPP records.

» FIXUPPs containing THREAD:s only.

 BAKPAT and NBAKPAT fixupps.

e LINNUM and LINSYM providing line number to program code or data association.
Terminator

e MODEND indicating end of module with optional start address.

Object Record Types

THE 16/32-BIT OBJECT MODULE FORMAT 6

Copyright IBM Corp. 1991, 1993

80H THEADR Translator Header Record

Description:
The THEADR record contains the name of the object module. This name identifies an object module
within an object library or in messages produced by the linker.

1 byte 2 byte 1 byte < variable length > 1 byte
80 Record String Name String Chk Sum
Length Length or 0

Figure 2. THEADR record type definition

The String Length byte gives the number of characters in the name string; the name string itself is ASCII.
This name is usually that of the source program (if supplied by the language translator), or may be specified
directly by the programmer (e.g. TITLE pseudo-op).

This record must occur as the first object record. More than one header record is allowed (as a result of an
object bind, or if source arose from multiple files as a result of include processing).

NOTES:

The name string is always present; a null name is allowed but not recommended (not much information for
a debugger that way).

It is recommended that the module be generated with the full path and filename containing the source code.
The THEADR record must be the first record of the object module.

More than one header record is allowed (as a result of source from multiple files during the include process).

THE 16/32-BIT OBJECT MODULE FORMAT 7

Copyright IBM Corp. 1991, 1993

82H LHEADR Library Header Record

Description:

This record 1s very similar to the THEADR record. It i1s used to indicate the name of a module within a
library file (which has a different organization internally than an object module).

Record format:

1 byte 2 byte 1 byte <variable length> 1 byte
82 Record String Name String Chk Sum
Length Length or 0

Figure 3. LHEADR record type definition
NOTES:

In LINK, THEADR and LHEADR records are handled identically.

THE 16/32-BIT OBJECT MODULE FORMAT 8

Copyright IBM Corp. 1991, 1993

88H COMENT Comment Record

Description:

The COMENT record contains a character string that may represent a plain text comment, a symbol mean-
ingful to a program such as LINK or LIB, or some binary coded information that alters the linking process.
The comment records are actually a group of items, classified by “comment class”.

1 byte 2 byte

88 Record
Length

1 byte 1 byte <Record length - 3> 1 byte

Comment {Comment| Commentary byte string |{Chk Sum
Type Class (optional) or 0

Figure 4. COMENT record type definition
Comment Type

The comment type byte is bit-significant; layout is:

where
NP is set if the comment is to be preserved by object bind utilities
NL is set if the comment is not for display by object bind utilities
Comment class and commentary byte string

The comment class is an 8-bit numeric which conveys information by its value (accompanied by a null byte
string), or indicates the information to be found in the accompanying byte string. The byte string’s length is
determined from the record length, not by an initial count byte.

The values in use currently are the following:

0 Translator
For translator; may name the source language or translator. Recommended: translator name and
version plus optimization level used for compilation be recorded here. Other compiler or assembler
options can be included, although current practice seems to be to place these under comment class 9D.

1 Intel copyright
Ignored by the linker.

2 through 9B Intel reserved
The values from 9C through FF are ignored by Intel products.

THE 16/32-BIT OBJECT MODULE FORMAT 9

Copyright IBM Corp. 1991, 1993

9C

9D

9E

9F

A0

Al

MS-DOS version -- obsolete
Ignored by linker

Memory Model -- ignored
Ignored by linker
DOSSEG

Sets the linkers DOSSEG switch. The byte string is null. This record is included in the startup module
in each language library. It directs the linker to use the standardized segment ordering, according to the
naming conventions documented with DOS, OS/2 and accompanying language products.

Library indicator
The byte string contains a library file name (without a lead count byte and without an extension). Can
be over-ridden via NOD link switch.

OMF extensions
This class consists of a set of records, identified by subtype (first byte of commentary string). Values
supported by the OS/2 2.0 linker are

01 IMPDEF
Import definition record. See IMPDEF section for complete description.

02 EXPDEF
Export definition record. See EXPDEF section for complete description.

03 INCDEF
Incremental compilation record. See INCDEF section for complete description.

04 Protected Memory Library
Relevant to 32 bit DLL’s. This comment record is inserted in the object module by the
compiler when it encounters a compiler option or pragma indicating a protected DLL.
The linker then sets a flag in the header of the executable file (DLL) to indicate that the
DLL should be loaded in such a way that its shared code and data 1s protected from cor-
ruption.

When the flag is set in the EXE header, the loader loads the selector of the protected
memory area into the DS while performing run-time fixups (relocations). All other
DLL’s and applications get the regular DGROUP selector, which doesn’t allow access to
the protected memory area set up by the operating system.

05 LNKDIR
C+ + linker directives record. See LNKDIR section for complete description.

06-FF Reserved for Microsoft.

NOTE: presence of any unrecognized subtype causes LINKER to generate a fatal error.

Symbolic debug information
This comment class is now used solely to indicate the version of the symbolic debug information.

The byte string will be a version number (8-bit numeric) followed by an ASCII character string indi-
cating the style of symbol and line number (LINNUM) information. Current values are

n,’C’,"V’ CodeView style
n,’D’, X" AIX style
n,’H’,/L’ IBM PM Debugger

Link Pass
This record conveys information to the linker about the organization of the file. At present, a single
sub-extension is defined. The commentary string is

01 Optional

THE 16/32-BIT OBJECT MODULE FORMAT 10

Copyright IBM Corp. 1991, 1993

A3

A4

A6

A7

A8

A9

AA

AF

Subclass 01 indicates the start of link pass 2 records; this may be followed by anything at all, which will
be ignored by the linker (determined from the RecLength). When this comment appears, the linker can
rest assured that only LEDATA, LIDATA, FIXUPP, LINNUM and the terminal MODEND records
will occur after this. All other record types, plus THREAD fixups, occur before.

WARNING: It is assumed that this comment will not be present in a module whose MODEND record
contains a program starting address.

LIBMOD indicator
Library module comment record. Ignored by LINK386.

EXESTR indicator
Executable Module Identification String

A commentary string specifying a string to be placed in the executable module, but which is not loaded
with the load module.

INCERR

Incremental compilation error. See INCERR section for a complete description.

NOPAD
No segment padding. Ignored by LINK386.

WKEXT
Weak Extern record. See WKEXT section for a complete description.

LZEXT
Lazy Extern record. Ignored by LINK?386.

PHARLAP
PharLap Format record. Ignored by LINK386.

IDMDLL indicator
Identifier Manipulator Dynamic Link Library. See IDMDLL section for a complete description

<
N

B2H-BFH

Unused

COH-FFH

Reserved for user-defined comment classes.

Notes:

A COMENT record can appear almost anywhere in an object module. Only two restrictions apply:

A COMENT record cannot be placed between a FIXUPP record and the LEDATA or LIDATA record
to which it refers.

A COMENT record can not be the first or last record in an object module. (The first record must
always be a THEADR record and the last must always be a MODEND).

THE 16/32-BIT OBJECT MODULE FORMAT 11

Copyright IBM Corp. 1991, 1993

88H IMPDEF Import Definition Record (comment class A0, subtype 01)

Description:

This record describes the imported names for a module.

Record format:

One import symbol is described; the subrecord format is

1 1 <variable> <variable> 2or<var> (bytes)
01 Ord Internal Module Entry
Flag Name Name Ident

Figure 5. IMPDEF record type definition

where:

01

OrdFlag

identifies the subtype as an IMPDEF

is a byte; if zero the import is identified by name. If nonzero, it is identified by ordinal.
Determines the form of the Entryldent field.

InternalName in <count, char> string format and is the name used within this module for the

import symbol. This name will occur again in an EXTDEF record.

ModuleName in <count, char> string format and is the name of the module which supplies an

export symbol matching this import.

Entryldent is an ordinal or the name used by the exporting module for the symbol, depending upon

Notes:
IMPDEF records are created by the utility IMPLIB, which builds an “import library” from a module defi-

nition file or dynamic-link library.

the OrdFlag.

If this field is an ordinal (OrdFlag nonzero), it is a 16-bit word. If this is a name, and the
first byte of the name is zero, then the exported name is the same as the import name (in
the InternalName field). Otherwise, it is the imported name in <count, char> string
format (as exported by ModuleName).

THE 16/32-BIT OBJECT MODULE FORMAT 12

Copyright IBM Corp. 1991, 1993

88H EXPDEF Export Definition Record (comment class A0, subtype 02)
Description:

This record describes the exported names for a module.

Record format:

One exported entry point is described; the subrecord format is

1 1 < variable > < variable > 2 (bytes)
02 Exp Exported Internal Export
Flag Name Name Ordinal

<conditional>

Figure 6. IMPDEF record type definition

where:
02 identifies the subtype as an EXPDEF
ExpFlag is a bit-significant 8-bit field.

DL TR PP 1 byte --meeecmmmcc e >
Ord Resident No Parm
Bit Name Data Count
1 1 1 Cmmmme 5 bits =-=cmmma- >

OrdBit Set if the item is exported by ordinal; in this case the ExportOrdinal field is present.

ResName Set if the exported name is to be kept resident by the system loader; this is an opti-
mization for frequently used items imported by name.

NoData Set if the entry point does not use initialized data (either instanced or global).

ParmCount Number of parameter words. The ParmCount field is set to zero for all but
callgates to 16-bit segments.

Exported Name in <count, char> string format. Name to be used when the entry point is imported by
name.

Internal Name in < count, char > string format. If the name length is zero, the internal name is the same as
the Exported Name. Otherwise, it is the name by which the entry point known within this
module. This name will appear as a PUBDEF or LPUBDEF name.

ExportOrdinal present if the OrdBit is set; it is a 16-bit numeric whose value is the ordinal used (must be
non-zero).

THE 16/32-BIT OBJECT MODULE FORMAT 13

Copyright IBM Corp. 1991, 1993

Notes:

EXPDEFs are produced by the compiler when the keyword _export is used in a source file. LINK 386 limits
the ExportOrdinal value to 16384(16K) or lower.

THE 16/32-BIT OBJECT MODULE FORMAT 14

Copyright IBM Corp. 1991, 1993

88H INCDEF Incremental Compilation Record (comment class A0, subtype 03)
Description:

This record is used for incremental compilation. Every FIXUPP and LINNUM record folliwing an
INCDEF record will adjust all external index values and line number values by the appropriate delta. The
deltas are cumulative if there is more than one INCDEF per module.

Record format:

The subrecord format is

1 2 2 <variable> (bytes)
03 EXTDEF LINNUM padding
delta delta

Figure 7. INCDEF record type definition
The EXTDEF delta and LINNUM delta fields are signed.

Padding (zeros) is added by Quick C to allow for expansion of the object module during incremental compi-
lation and linking.

Notes:
Negative deltas are allowed.

THE 16/32-BIT OBJECT MODULE FORMAT 15

Copyright IBM Corp. 1991, 1993

88H LNKDIR C+ + Directives Record (comment class A0, subtype 05)
Description:

This record is used by the compiler to pass directives and flags to the linker.

Record format:

The subrecord format is

1 1 1 1 (bytes)

05 Bit Flags Pseudocode Vers CV Vers

Figure 8. LNKDIR record type definition

The format of the Bit Flags byte is:

8 1 1 1 1 1 1 1 1 (bits)

05 0 0 0 00 Run Omit CV New
MPC Publics EXE

Figure 9. BIT FLAGS byte definition

The low-order bit, if set, indicates that LINK386 should output the new EXE format; this flag is ignored for
all but linking of Pseudocode applications. (Pseudocode requires a segmented executable) .

The second low-order bit indicates that LINK386 should not output the $PUBLICS subsection of the
CodeView info.

The third low-order bit indicates that MPC (Microsoft Make Pseudocode Utility) should be run.

Pseudocode Version
One byte indicating the Pseudocode interpreter version number.

CodeView Version
One byte indicating the CodeView version number.

Notes:
The presence of this record in an object module will indicate the presence of global symbols records. The

linker will not emit a Publics section for those modules with this comment record and a $SYMBOLS
section.

THE 16/32-BIT OBJECT MODULE FORMAT 16

Copyright IBM Corp. 1991, 1993

88H LIBMOD Library Module Name Record (comment class A3)

Description:

The LIBMOD comment record is used only by the LIB utility, not by LINK. It gives the name of an object
module within a library, allowing LIB to preserve the library file name in the THEADR record and still
identify the module names that make up the library. Since the module names is the basename of the .OBJ
file that was built into the library, it may be completely different from the final library name.

Record format:

The subrecord format is

1 <variable> (bytes)

A3 Module Name

Figure 10. LIBMOD record tyﬁe definition

The record contains only the ASCII string of the module name, in <coutn, char > format. The module
name has no path and no extension, just the base of the module name.

Notes:

LIB adds a LIBMOD record when a .OBJ file is added to a library and strips the LIBMOD record when a
.OBJ file is removed from a library, so typically this record only exists in .LIB files.

There will be one LIBMOD record in the library file for each object module that was combined to build the
library.

LINK386 ignores LIBMOD coment records.

THE 16/32-BIT OBJECT MODULE FORMAT 17

Copyright IBM Corp. 1991, 1993

88H EXESTR Executable String Record (comment class A4)

Description:

The EXESTR comment record implements the ANSI and XENIX/UNIX features in C:
» #pragma comment(exestr, <char-sequence >)

» #ident string
Record format:

The subrecord format is

1 <variable> (bytes)

A4 arbitrary text

Figure 11. EXESTR record type definition

The linker will copy the text in the “arbitrary text” field byte for byte to the end of the executable file. The
text will not be included in the program load image.

Notes:

If CodeView information is present, the text will not be at the end of the file, but somewhere before so as
not to interfere with the Code View signature.

There is no limit to the number of EXESTR comment records.

THE 16/32-BIT OBJECT MODULE FORMAT 18

Copyright IBM Corp. 1991, 1993

88H INCERR Incremental Compilation Error (comment class A6)
Description:

This comment record will cause the linker to terminate with the fatal error saying something to the effect of
“inavlid object -- error encountered during incremental compilation”.

The purpose of this is for the case when an incremental compilation fails and the user tries to manually link.
the object module cannot be deleted, in order to preserve the base for the next incremental compilation.

Record format:

The subrecord format is

1 (bytes)

A6 No fields

Figure 12. INCERR record type definition

THE 16/32-BIT OBJECT MODULE FORMAT 19

Copyright IBM Corp. 1991, 1993

88H NOPAD No Segment Padding (comment class A6)
Description:

This comment record identifies a set of segments which are to be excluded from the padding imposed with
the /PADDATA or /PADCODE options.

Record format:

The subrecord format is

1 1 or 2 (bytes)

A7 SEGDEF Index

Figure 13. NOPAD record type definition
The SEGDEF Index is the standard OMF index type od 1 or 2 bytes. It may be repeated.
Notes:

LINK386 ignores NOPAD coment records.

THE 16/32-BIT OBJECT MODULE FORMAT 20

Copyright IBM Corp. 1991, 1993

88H WKEXT Weak Extern Record (comment class A8)
Description:

This record marks a set of external names as “weak”, and for every weak extern associates another external
name to use as the default resolution.

Record format:

The subrecord format is

1 lor?2 lor?2 (bytes)
A8 Weak EXTDEF Index | Default resolution EXTDEF Index
R e T L Repeated ------mcccmccccaaaa- >

Figure 14. WEAK EXTERN record type definition
The Weak EXTDEF Index field is the 1 or 2 byte index to the EXTDEF of the extern which is weak.

The Default Resolution EXTDEF Index is the 1 or 2 byte index to the EXTDEF of the extern that will be
used to resolve the extern if no “stronger” link is found to resolve it.

Notes:

There are two ways to cancel the “weakness” of a weak extern; both result in the extern becoming a “strong”
extern (the same as an EXTDEF). They are:

e if a PUBDEEF for the weak extern is linked in,
» if an EXTDEF for the weak extern is found in another module (including libraries).

If the weak extern becomes strong, then it must be resolved with a matching PUBDEF, just like a regular
EXTDEEF. If a weak exten has not become strong by the end of the linking process, then the default resol-
ution is used.

If two weak externs for the same symbol in different modules have differing default resolutions, LINK386
will emit a warning.

Weak externs do not query libraries for resolution; if an extern is still weak when libraries are searched, it
stays weak and gets the default resolution. However, if a library module is linked in for other reasons (say, to
resolve strong externs) and there are EXTDEFs for symbols that were weak, the symbols become strong.

For example, suppose there is a weak extern for “foo” with a default resolution name of “bar”. If there is a
PUBDEF for “foo” in some library module which would not otherwise be linked in, then the library module
is not linked in, and any references to “foo” are resolved to “bar”. However, if the library module is linked in
for other reasons, for example to resolve references to a strong extern named “bletch”, then “foo” will be
resolved by the PUBDEF from the library, not to the default resolution “bar”.

WKEXTs are best understood by explaining why they were added in the first place. The minimum BASIC
runtime library in the past consisted of a large amount of code which was always linked in, even for the
smallest program. Most of this code was never called directly by the user, but it was called indirectly from
other routines in other libraries, so it had to be linked in to resolve the external references.

THE 16/32-BIT OBJECT MODULE FORMAT 21

Copyright IBM Corp. 1991, 1993

For instance, the floating point library was linked in even if the user’s program did not use floating point,
because the PRINT library routine contained calls to the floating point library for support to print floating
point numbers.

The solution was to make the function calls between the libraries into weak externals, with the default resol-
ution set to a small stub routine. If the user never used a language construct or feature that needed the
additional library support, then no strong extern would be generated by the compiler and the default resol-
ution (to the stub routine) would be used. However, if the user accessed the library’s routines or used con-
structs that required the library’s support, a strong extern would be generated by the compiler to cancel the
effect of the weak extern, and the library module would be linked in. This required that the compiler know a
lot about which libraries are needed for which constructs, but the resulting executable was much smaller.

THE 16/32-BIT OBJECT MODULE FORMAT 22

Copyright IBM Corp. 1991, 1993

88H LZEXT Lazy Extern Record (comment class A9)
Description:

This record marks a set of external names as “lazy”, and for every lazy extern associates another external
name to use as the default resolution.

Record format:

The subrecord format is

1 lor2 lor?2 (bytes)
A8 Lazy EXTDEF Index | Default resolution EXTDEF Index
R L TR e Repeated -----c-eccccccacaaaa- >

Figure 15. LAZY EXTERN record type definition
3
The Lazy EXTDEF Index field is the 1 or 2 byte index to the EXTDEF of the extern which is weak.

The Default Resolution EXTDEF Index is the 1 or 2 byte index to the EXTDEF of the extern that will be
used to resolve the extern if no “stronger” link is found to resolve it.

Notes:

There are two ways to cancel the “laziness” of a lazy extern; both result in the extern becoming a “strong”
extern (the same as an EXTDEF). They are:

+ if a PUBDEF for the weak extern is linked in,

« if an EXTDEF for the weak extern is found in another module (including libraries).
If a lazy extern becomes strong, then it must be resolved with a matching PUBDEF, just like a regular

EXTDEEF. If a lazy extern has not become strong by the end of the linking process, then the default resol-
ution is used.

If two weak externs for the same symbol in different modules have differing default resolutions, LINK will
emit a warning.

Unlike waek externs, lazy externs do not query libraries for resolution; if an extern is still lazy when libraries
are searched, it stays lazy and gets the default resolution.

LINK386 ignores LZEXT coment records.

THE 16/32-BIT OBJECT MODULE FORMAT 23

Copyright IBM Corp. 1991, 1993

88H IDMDLL Identifier Manipulator DLL (comment class AF)
Description:
This record provides the name and initialization parmameters of a DLL that will demangle the compiler

generated mangled names. The linker will use this DLL when displaying error messages.

Record format:

The Subrecord Format is:

1 1 <-Name Length-> 1 <-Parms Length->
OxAF | Name DLL Name Parms Demangle Init
Length Length Parameters

Figure 16. IDMDLL Identifier Manipulator DLL subrecord format definition
The Name Length byte gives the number of characters in the DLL Name; the DLL Name itself is ASCII.

The DLL Name is the name of the Identifier Manipulator Dynamic Link Library provided by the language.
This DLL is used to demangle an internal identifier when that identifier will be displayed in an error

message.

The Parms Length byte gives the number of characters in the Demangle Init Parameters; the Demangle Init
Parameters itself is ASCII.

The Demangle Init Parameters provides information (to the DLL) on how internal identifiers are mangled.

The linker will not scan forward for an IDMDLL record when an identifier will be displayed. This record
should occur near the beginning of the file.

IDMDLL class COMENT records are processed during pass 1 of the linker.

Notes:

Because object oriented compilers allow for two functions to have the same name but different parameters,
the compiler uniquely identifies each function by changing the name of the function. This is known as
mangling. An example of this would be:

User Prototype Compiler Generated
Mangled Name

void doit(int, float) _doit_ Fif
void doit(const char *) _doit__FCPc

The user will usually not be aware that the compiler changed the name, so it is neccessary for the linker to
demangle the compiler generated name when printing out linker error messages.

The dynamic link library (DLL) provided by an object oriented language compiler must contain two 16-bit
functions which employ the pascal calling convention:

INITDEMANGLEID Receive initialization parameters specified in the IDMDLL COMENT record.

THE 16/32-BIT OBJECT MODULE FORMAT 24

Copyright IBM Corp. 1991, 1993

DEMANGLEID Demangles first parameter (identifier, ”_add__i ii”) to appropriate prototype (i.e. “int

add(int, int)”) and returns result in second parameter.
The INITDEMANGLEID and DEMANGLEID entry points may be called more than once.

All functions must return true (non-zero) if the call is successful and false (zero) if the call fails. In this
manner the linker can ignore whatever is returned in the second parameter of the DEMANGLEID fuction if
the function returns false. When calling DEMANGLEID, the linker will pass in the address of a buffer for
the second parameter, and the size of the buffer for the third parameter.

All string parameters must be length-prefixed ASCII strings except for pszPrototype, parameter 2 for
DEMANGLEID (because the length might not fit in a byte). Function prototypes for these routines look
like:

unsigned short pascal far INITDEMANGLEID(char far * psInitParms);

unsigned short pascal far DEMANGLEID(char far * psMangledName,
char far * pszPrototype,
unsigned long BufferlLen);

Note: Languages may also wish to provide 32-bit functions for use by 32-bit linkers, when they become
available. Function prototypes look like:

unsigned lTong _system InitDemangleID32(char * psInitParms);
unsigned long _system DemangleID32(char * psMangledName,

char * pszPrototype,
unsigned long Bufferlen);

THE 16/32-BIT OBJECT MODULE FORMAT 25

Copyright IBM Corp. 1991, 1993

88H PharLap Format Record (comment class AA)

Description:

The OMF extension designed by PharlLap is called "Easy OMF-386" and changes to the affected record
types are described in this section.

Most modifications involve only a substitution of 32-bit (4-byte) fields for what were formerly 16-bit (2-byte)
fields. In the two cases where the changes involve more than just a field size (in the SEGDEF and FIXUPP

records), the information is mentioned in this section but complete details are given in the sections describing
the specific records.

Record format:

The subrecord format is

AA "80386"

Notes:

The AA comment record should come immediately after the sole THEADR record. Presence of the
comment record indicates that the following other record types have fields that are expanded from 16-bit to
32-bit values:

SEGDEF offset field and offset field length

PUBDEF offset field

LEDATA offset field

LIDATA offset field (note that repeat count field is still 16 bits)
FIXUPP target displacement in explicit FIXUP subrecord
BLKDEF return address offset field

LINNUM offset field

MODEND target displacement field

FIXUPP records have the added Loc values of 5 and 6. See the FIXUPP section of this document for
details.

SEGDETF records have added alignment values (for 4-byte alignment and 4K byte alignment) and an added
optional byte at the end which contains the Usel16/Use32 bit flag and access attributes (read/write/execute)
for the segment. See the SEGDEF section of this document for details.

LINK386 ignores PHARLAP coment records.

THE 16/32-BIT OBJECT MODULE FORMAT 26

Copyright IBM Corp. 1991, 1993

8AH or 8BH MODEND Module End Record

Description:

The MODEND record denotes the end of the object module. It also indicates whether the object module
contains a main routine in a program, and it can, optionally, contain a reference to a programs entry point.

Record format:

1 byte 2 bytes

8A Record
or 8B Length

1 byte 1 byte 1or2 lor?2 2 or 4 bytes 1 byte

Module| End Frame Target Target Chk sum
Type Data Datum Datum Displacement| or 0
Index Index
<e-m--- Start Address, conditional ------ >

Figure 17. MODEND module end record
where:
Module Type

The module type byte is bit-significant; layout is:

MATTR Seg 0 0 0 0 X
Main Strt | Bit
2 bits 1 1 1 1 1 1
where:
MATTR is a 2-bit field

Main is set if the module is a main module

Strt is set if the module contains a start address; if this bit is set, the field starting with
the EndDat byte is present and specifies the start address.

SegBit Reserved. Only 0 is supported by OS/2.
X This bit should be set (as described for OMF86). However, as is the case for the
OMF86 linkers, the value will be ignored.
Start Address

The Start Address subfield is present only if the Strt bit in the Module Type byte is set. Its format is iden-
tical to the FixDat, Frame Datum, Target Datum, and Target displacement in a FIXUP subrecord of a
FIXUPP record. The displacement (if present) is a 4 byte field if the record type is 8BH and is a 2-byte field
if the record type is 8AH. This value provides the initial contents of CS:(E)IP.

The start address must be given in th MODEND record of the root module if overlays are used.

THE 16/32-BIT OBJECT MODULE FORMAT 27

Copyright IBM Corp. 1991, 1993

Notes:
A MODEND record can appear only as the last record in an object module.

It is assumed that the link pass separator comment record (COMENT A2, subtype 01) will not be present in
a module whose MODEND record contains a program starting address.

THE 16/32-BIT OBJECT MODULE FORMAT 28

Copyright IBM Corp. 1991, 1993

8CH EXTDEF External Names Definition Record

Description:

The EXTDEF record contains a list of symbolic external references -- that is, references to symbols defined
in other object modules. The linker resolves external references by matching the symbols declared in
EXTDEF records with symbols declared in PUBDEF records.

Record format:

1 byte 2 bytes

8C Record
Length

1 byte <string> lor2 1 byte

String [External Type Chk sum
Length| Name string | Index or 0

A {epeated --------- >
Figure 18. EXTDEF external names definition record
This record provides a list of unresolved references, identified by name and with optional associated type
information. The external names are ordered by occurrence jointly with the COMDEF and LEXTDEF

records and referenced by an index in other records (FIXUPPs); the name may not be null. Indices start
from one.

String Length is a 1-byte field containing the length of the name field that follows it. The length of the name
is restricted to 255 bytes.

The Type Index is encoded as an index field and contains debug information. No type checking is per-
formed by the linker.

Notes:
The linker imposes a limit of 1023 external names.
Any EXTDEF records in an object module must appear before the FIXUPP records that reference them.
Resolution of an external reference is by name match (case sensitive) and symbol type match. The search
first looks for a matching name, in the sequence:

1. Searches PUBDEF and COMDEF for resolution.

2. If linking a segmented executable, searches imported names (IMPDEF).

3. If this is not a DLL, then searches for an export (EXPDEF) with the same name -- a self-
imported alias.

4. Searches for the symbol name among undefined symbols. If the reference is to a weak extern, then
the default resolution is used. If the reference is to a strong extern, then it’s an undefined external
and a link error is generated.

All external references must be resolved at link time (using the above search order). Even though the linker

produces an executable file<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>